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Diffusion entropy and waiting time statistics of hard-x-ray solar flares
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We show at work a technique of scaling detection based on evaluating the Shannon entropy of the diffusion
process obtained by converting the time series under study into trajectories. This method, called diffusion
entropy, affords information that cannot be derived from the direct evaluation of waiting times. We apply this
method to the analysis of the distribution of time distancet between two nearest-neighbor solar flares. This
traditional part of the analysis is based on the direct evaluation of the distribution functionc(t), or of the
probabilityC(t), that no time distance smaller than a givent is found. We adopt the paradigm of the inverse
power-law behavior, and we focus on the determination of the inverse power indexm, without ruling out
different asymptotic properties that might be revealed, at larger scales, with the help of richer statistics. We
then use the DE method, with three different walking rules, and we focus on the regime of transition to scaling.
This regime of transition and the value of the scaling parameter itself,d, depends on the walking rule adopted,
a property of interest to shed light on the slow process of transition from dynamics to thermodynamics often
occurring under anomalous statistical conditions. With the first two rules the transition regime occurs through-
out a large time interval, and the information contained in the time series is transmitted, to a great extent, to it,
as well as to the scaling regime. By using the third rule, on the contrary, the same information is essentially
conveyed to the scaling regime, which, in fact, emerges very quickly after a fast transition process. We show
that the DE method not only causes to emerge the long-range correlation with a givenm,3, and so a basin of
attraction different from the ordinary Gaussian one, but it also reveals the presence of memory effects induced
by the time dependence of the solar flare rate. When this memory is annihilated by shuffling, the scaling
parameterd is shown to fit the theoretically expected function ofm. All this leads us to the compelling
conclusion thatm52.13860.01.
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I. INTRODUCTION

The study of solar flares is becoming popular among
researchers working at the frontier of statistical mechan
due to the widely shared conviction that they are a signa
of a significant departure from the condition of ordina
Brownian motion@1–4#. As pointed out by Wheatland@5#,
the distribution of times between flares, gives information
how to model flare statistics. In this paper we shall be re
ring to these times, denoted by us with the symbolt, as the
time distance between two consecutive events, and the
responding distribution density will be denoted byc(t). Al-
though the agreement on the fact that flare statistics de
from ordinary statistical mechanics is general, there seem
be the still unsettled issue of what is the proper model t
will account for this form of anomalous statistics. Does th
form of statistics reflect self-organized criticality or turb
lence@3#? We think that the settlement of this delicate iss
is made difficult by the fact that, although many autho
claim thatc(t) is an inverse power law with power indexm,
the actual value ofm still seems to be uncertain. In fact, th
authors of Ref.@1# proposem51.7 and those of Ref.@2#
claim that m52 is the proper power-law index. Boffett
et al. @3# proposem52.4. Finally, Wheatland explains th
origin of the power-law behavior with a model yieldin
m53.0 @5#.

As will be made clear by the theoretical analysis of th
paper, it is possible to prove, without taking a position on
origin of the inverse power-law behavior, thatm53 and
1063-651X/2002/65~4!/046203~13!/$20.00 65 0462
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m52 are critical values. In fact, we note that moving fro
m.3 to m,3 is equivalent to a phase transition from th
Gaussian to the Le´vy basin of attraction@6#, and moving
from m.2 to m,2 implies a transition from the condition
of Lévy statistics to a form of out of the equilibrium regim
@7#. Thus, an uncertainty larger than the distance of the b
der m52 from the borderm53 is judged by us to be an
unsatisfactory condition that might delay the settlement
the issues concerning the complex dynamics underlying
waiting-time statistics. The main purpose of this paper is
illustrate a statistical method of analysis that yields a relia
value for the power indexm. We hope that this result migh
be useful for the researchers in this interesting field of inv
tigation and at the same time might be beneficial, in gene
for all those who are interested in the statistical analysis
time series.

The outline of the paper is as follows. In Sec. II we r
view the method of diffusion entropy~DE! that will be a
crucial step of the statistical analysis done in this paper.
though the method has been applied somewhere else@8–10#,
we will present a short review in order to make this paper
self-contained as possible. In Sec. III, we illustrate a dyna
cal model that, in general, results in time sequences that
statistically equivalent to those observed in real data. T
model is not limited to the case of inverse power laws, b
here we make the assumption that the shifted inverse po
law is an ideal condition convenient for analyzing so
flares, and we study the explicit form emerging from th
condition. In Sec. IV, we illustrate three walking prescri
©2002 The American Physical Society03-1
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tions that will be used to convert the real data into rand
trajectories. The benefit of adopting several walking p
scriptions was discussed in Ref.@9#. Here we introduce two
additional rules and we apply both of them as well as one
those introduced in Ref.@9#. In Sec. V we prove that the
numerical evaluation of the probability of getting a waitin
time larger than a givent yields a value form more accurate
than that afforded by the waiting-time distributionc(t). In
Sec. VI we show how to process the data to make an effic
use of the DE method. In Sec. VII we use the DE method
further reduce the error of Sec. V. We devote Sec. VIII
concluding remarks.

II. DIFFUSION ENTROPY

The main idea of this approach to scaling is remarka
simple. Let us consider a sequence ofM numbersj i(t) with
i 51, . . . ,M . The purpose of the DE algorithm is to establi
the possible existence of a scaling, either normal or ano
lous, in the most efficient way as possible without alteri
the data with any form of detrending. Let us select first of
an integer numberl, fitting the condition 1< l<M . This in-
teger number will be referred to as ‘‘time.’’ For any give
time l we can findM2 l 11 subsequences defined by

j i
(s)[j i 1s , s50, . . . ,M2 l . ~1!

For any of these subsequences we buildup a diffusion tra
tory, labeled with the indexs, defined by the position

x(s)~ l !5(
i 51

l

j i
(s)5(

i 51

l

j i 1s . ~2!

Let us imagine this position as referring to a Browni
particle that at regular intervals of time has been jump
forward or backward according to the prescription of t
corresponding subsequence of Eq.~1!. This means that the
particle before reaching the position that it holds at timel has
been makingl jumps. The jump made at thei th step has the
intensity uj i

(s)u and is forward or backward according
whether the numberj i

(s) is positive or negative.
We are now ready to evaluate the entropy of this diffus

process. To do that we have to partition thex axis into cells
of sizee( l ). When this partition is made we have to label t
cells. We count how many particles are found in the sa
cell at a given timel. We denote this number byNi( l ). Then
we use this number to determine the probability that a p
ticle can be found in thei th cell at timel , pi( l ), by means of

pi~ l ![
Ni~ l !

~M2 l 11!
. ~3!

At this stage the entropy of the diffusion process at timel is
determined and reads

Sd~ l !52(
i

pi~ l !ln@pi~ l !#. ~4!
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The easiest way to proceed with the choice of the cell s
e( l ), is to assume it to be independent ofl and determined by
a suitable fraction of the square root of the variance of
fluctuationj( i ). In the case in which the numbersj i are11,
0, and21, e51 is the natural choice.

Before proceeding with the illustration of how the D
method works, it is worth making a comment on how
define the trajectories. The method we are adopting is ba
on the idea of a moving window of sizel that makes thesth
trajectory closely correlated to the next, the (s11)th trajec-
tory. The two trajectories havel 21 values in common. It is
worth making a comparison with the technique of detrend
fluctuation analysis~DFA! @11#. The DFA is a popular
method of scaling analysis, aiming at detecting the lon
range correlations in seemingly nonstationary time series
in the last few years has been used in more than 100 pu
cations@12#. The DFA is based on nonoverlapping window
and, consequently, trajectories with different labels are
tally independent from one another. The motivation for us
overlapping windows, with the DE method, is given by o
wish to establish a connection with the Kolmogorov-Sin
~KS! entropy@13,14#. In Sec. III we shall make further com
ments on this connection. The KS entropy of a symbo
sequence is evaluated by moving a window of sizel along
the sequence. Any window position corresponds to a gi
combination of symbols, and from the frequency of ea
combination it is possible to derive the Shannon entro
S( l ). The KS entropy is given by the asymptotic lim
lim l→`S( l )/ l . We believe that the same sequence, analy
with the DE method, at the large values ofl where a finite
KS entropy shows up, must yield a well-defined scalingd.
To realize this correspondence we carry out the determ
tion of the DE by using the same criterion of overlappi
windows as that behind the KS entropy.

Details on how to deal with the transition from the sho
time regime, sensitive to the discrete nature of the proc
under study, to the long-time limit where both space and ti
can be perceived as continuous, are given in Ref.@10#. Here
we make the simplifying assumption of considering lar
enough times as to make the continuous assumption valid
this case, the trajectories, built up with the above-illustra
procedure, correspond to the following equation of motio

dx

dt
5j~ t !, ~5!

wherej(t) denotes the value that the time series under st
gets at thel th site of the sequence under study. This mea
that the timet[ l ~with l @1) is thought of as a continuou
and that the functionj( l ) is a function of this continuous
time. In this case the Shannon entropy reads

S~ t !52E
2`

`

dxp~x,t !ln@p~x,t !#. ~6!

We also assume that

p~x,t !5
1

td(t)
FS x

td(t)D ~7!
3-2
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DIFFUSION ENTROPY AND WAITING TIME . . . PHYSICAL REVIEW E 65 046203
and thatF(y) maintains its form, namely that the statistics
the process is independent of time. Let us plug Eq.~7! into
Eq. ~6!. Using a simple algebra, we get

S~t!5A1d~t!t, ~8!

where

A[2E
2`

`

dyF~y!ln@F~y!# ~9!

and

t[ ln~ t !. ~10!

The assumptions made to get the result of Eq.~8! are not
correct during the transition process, and consequently
DE method can be used as a reliable way to detect sca
only in the long-time limit. The DE can be used, however,
shed light into the regime of transition that is deeply co
nected with the foundation itself of statistical mechanics. A
cording to Khinchin@15# the central limit theorem is funda
mental for the realization of canonical equilibrium. As we
known, a process resulting from the sum ofN independent
variables yields a Gaussian distribution, provided thatN is
large and the single variables have a probability distribut
with a finite second moment. A physical process makingN
increase from values of the order of unity to values so la
as to fit the prediction of the central limit theorem can
perceived as a transition from the microscopic to the mac
scopic regime, where thermodynamics applies. If the mic
scopic variables do not have a finite second moment,
ordinary central limit theorem must be replaced by the g
eralized central limit theorem@16# and in the limiting case of
N→` we find Lévy rather than Gauss statistics. We c
generalize the point of view of Khinchin and consider also
this case the process of transition ofN from small to large
values as a form of transition from the microscopic to t
thermodynamic regime.

Due to the nature of the DE method, the role ofN is here
played by the ‘‘time’’t. The microscopic regime refers to th
fluctuation ofj i and the macroscopic regime corresponds
the fluctuations of the diffusion coordinatex(t). The time
evolution of d(t) towards the final value, independent
time, reflects the transition from dynamics to thermodyna
ics.

We shall adopt three different walking rules~see Sec. IV!.
The first two rules are characterized by an extended reg
of transition from dynamics to thermodynamics. Notice th
the real data available are finite, thereby producing satura
effects in the long-time regime. Consequently, the reg
where the ideal scaling shows up, is an intermediate t
region following the extended initial transition and precedi
the long-time saturation regime. This has the effect of red
ing the size of the time region that can be fruitfully used
scaling detection. As we shall see, this is the reason why
DE method must be supplemented by the use of artifi
sequences. The third rule, on the contrary, yields a fast t
sition to the thermodynamic regime, thereby allowing us
04620
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determine the scaling by a direct use of Eq.~8!, with d(t)
assuming the time independent value of the thermodyna
limit.

III. DYNAMIC MODEL

The solar flares analyzed in this paper are perceived
sequence of events occurring at unpredictable timest i , with
i 51, . . . ,M , whereM is the label of the last event consid
ered. We do not take into account the intensity of the
events, which will be studied somewhere else. Thus,
most important property for us to study, is the time distrib
tion densityc(t), with t denoting the time distance betwee
two nearest-neighbor eventst i[t i 112t i . Let us make the
assumption that the experimental analysis of the time se
yields the form

c~t!5~m21!
Tm21

~T1t!m
. ~11!

We make the key assumption that the numberst i are un-
correlated. As we shall see, the theory of this paper affo
also a criterion to assess if this crucial assumption is cor
or not. Under this key assumption we can buildup a dynam
model that is statistically equivalent to the solar dynam
generating the sequence of thet i ’s. Let us consider the dy-
namic process,

dy/dt5lyz, ~12!

with z.1. Let us imagine that the trajectoryy(t) moves
within the interval@0,1#. Let us assume also that when th
trajectory reaches the right border of this interval it is i
jected back within this interval by means of a random sel
tion of the initial positiony(0). The random selection is
done by using a random number generator that assigns
same probability to the numbers of the interval@0,1#. The
connection between the initial condition and the exit timet
is given by

y~0!5@11~z21!lt#2~1!/~z21!. ~13!

This leads immediately to the distribution of Eq.~11! with

m5
z

z21
~14!

and

T5
m21

l
. ~15!

We are now equipped to establish a connection with
entropy production per unit of time. Randomness here is
volved at the moment of selecting the initial condition, and
characterized by an unknown amount of entropy increaseH.
If m.2, the distribution of Eq.~11! yields a finite mean
waiting time,
3-3
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^t&5
T

m22
. ~16!

It is evident then that the rate of entropy production per u
of time is given by

hE5H
~m22!

T
. ~17!

Using the dynamic model it is possible to establish a m
proper connection with the KS entropy. However, this is
no great relevance within the context of the present pa
Therefore, we limit ourselves to considering the entropy p
duction of Eq.~17!, where the subscriptE stands for ‘‘exter-
nal.’’ In fact, in the picture adopted in the present paper
source of entropy production is the random selection of
numbers of the interval@0,1#, an action external to the pro
cess under study. It has to be pointed out that this exte
entropy production is subtly related to the KS entrop
which, on the contrary, is interpreted as being of inter
origin @17#. This is so because the dynamical model is a m
with a very sharp chaotic region that reduces to a set of z
measure, confined to the pointy51, in the limiting condition
where the idealized model of this section applies.

In the casem,2 the entropy produced is proven@7# to be
the following function of time:

S~ t !}tm21. ~18!

It is evident that in the limiting case of very large time valu
the entropy production per unit of time vanishes, there
implying that the condition,m52 is a border at which a kind
of phase transition occurs. In the regionm.2 the dynamical
system of Eq.~12! has an invariant distribution. In the regio
m,2 the system does not have an invariant distribution@7#.
From an intuitive point of view we can imagine that durin
the observation process the system keeps moving toward
equilibrium distribution, as a kind of Diracd function lo-
cated aty50 @7#. The time necessary to reach this invaria
distribution is infinite.

In conclusion, an infinitesimally small change fromm
.2 to m,2 would have the effect of annihilating the invar
ant distribution and of making the process ‘‘nonstationar
The method of analysis of this paper will allow us to ass
that m52.13860.01, namely, that the solar flares fluctu
tions are stationary, even if very close to the border with
‘‘nonstationary’’ region. This result will be obtained by
direct evaluation ofm, supplemented by the adoption of th
DE method. As we shall see, this conclusion is reached a
settling a major problem caused by the existence of a ge
ine form of nonstationary behavior; this kind of nonstatio
ary behavior means that the dynamic rules behind the
cess under study change upon change of time. This will l
us to the final conclusion that the model of Eq.~12! is a
fairly accurate way of mimicking solar flare dynamics wi
z,2 (m.2). In Secs. VII and VIII we shall make som
conjectures on how to improve this model to take into
count the time dependence of the solar flare rate.
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IV. ON THREE DISTINCT PRESCRIPTIONS TO WALK

The scaling detected by the DE method is not independ
of the walking rules that we adopt. The outcomes of D
method are not unique, due to the dependence of the sca
parameterd on the walking rules, and this casts doubts
this method of analysis. However, the task of this analysi
an indirect evaluation of the waiting-time distributionc(t),
or, equivalently, in the inverse power-law case, of the ind
m. If we take for granted the inverse power-law structure
c(t), the power indexm is unique. We adopt the following
prescriptions for the random walker:

~1! Make a jump of fixed intensity, only when you me
an event, and do it always in the same direction.

~2! As with Rule~1! make a jump only when you meet a
event, but do it either in the positive or negative directi
according to a coin tossing prescription.

~3! Walk at fixed interval of times, with jumps in the sam
direction, of intensity proportional to the time distance b
tween two nearest-neighbor events.

Note that here we analyze the sequence$t i%, where each
value t i denotes the time distance between two near
neighbor flares~regarded as events!. Thus, Rules~1! and~2!
imply that the random walker makes instantaneous jump
the times of flare occurrence. With Rule~3! the random
walker, at timest51,2, . . . ,n, . . . , makes jumps ahead o
intensity equal to the valuest i of the sequence under stud
Note that Rule~1! is one of the two rules used in Ref.@9#.
Here we use Rules~2! and~3!. Using the theory of Ref.@9#,
which, in turn, essentially rests on the generalized cen
limit theorem@16# and on the work of Feller@18#, we obtain
the following prescriptions:

d5H m21, 1,m,2

1/~m21!, 2,m,3

0.5, m.3,
~19!

d5H 0.5~m21!, 1,m,2

0.5, m.2, ~20!

and

d51/~m21!, m.1, ~21!

for Rules~1!, ~2!, and~3!, respectively.
Figure 1 shows clearly that the adoption of Rule~1! alone

would yield two distinct possible values form whend gets
values within the interval@0.5,1#. However, the joint adop-
tion of this and the other two rules settles this ambiguity. W
also notice that both Rule~1! and Rule~2! reflect the phase-
transition character of the conditionm52, while Rule ~3!,
apparently, does not. However, we see that Rule~3! for m
,2 yields a value ofd.1, namely, a diffusion process faste
than the ballistic diffusion. This is a consequence of the n
stationary nature of the conditionm,2.

It is important to stress that these rules imply that t
numberst i are not correlated. Furthermore, these rules r
on the assumption that the asymptotic limit ofc(t) is an
3-4
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DIFFUSION ENTROPY AND WAITING TIME . . . PHYSICAL REVIEW E 65 046203
inverse power-law distribution with no truncation. We sh
see that the DE method is sensitive to the correlation am
the numberst i , and that the 11-year solar cycle is respo
sible for that correlation. As to the truncation of the inver
power law at the large distances, this is another delicate is
worth of some comments. Laherre´re and Sornette@19#, sug-
gest that the stretched exponential family might have a
oretical motivation stronger than the power-law distributio
On the other hand, in the intermediate time region a stretc
exponential is indistinguishable from a power law. The tw
proposed fitting functions become distinguishable one fr
the other in the long-time regime, which is affected by po
statistics. However, the work of Refs.@20# and @21# show
that a truncation of the power law ofc(t) at large times
yield an ultraslow convergence to normal diffusion, with e
fects that are beyond the range of observation of the
analysis, due to the data statistical limitation.

We shall see that both Rule~1! and Rule~2! yield a very
slow transition to the scaling regime. Due to the statisti
limitation of our data, the scaling regime turns out to be
relatively short-time region between transition and satura
regime. Thus, we shall be forced to carry out our analy
with the help of artificial sequences with the same numbe
terms as the real data, by fitting the DE curves produced
the real data with the DE curves generated by the artifi
sequences. The adoption of the third rule, on the contr
yield a fast transition to the thermodynamic regime and, c
sequently, allows us to determine directly the value ofd. In
both cases, however, the physical consequences of a pos
truncation of the inverse power law are beyond our range
observation.

V. STATISTICAL ANALYSIS OF THE REAL DATA:
c„t… AND C„t…

In this section we plan to derive the waiting-time dist
bution c(t) directly from the statistical analysis of the re
data, the x rays emitted by solar flares in the case here u
study. At first sight, one might think that a direct determin
tion of c(t) is more convenient than any indirect approac

FIG. 1. d as a function ofm according to three rules. The solid
dashed, and dotted lines denote Rules~1!, ~2!, and~3!, respectively.
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Actually, it is not so. As mentioned in Sec. I, we find that t
evaluation of the probability of finding no time distanc
larger than a givent, denoted byC(t), defined by

C~t![E
t

`

c~ t !dt, ~22!

is more convenient than the direct evaluation ofc(t). In
later sections we shall prove a striking property: the eval
tion of m through the DE method, an approach less dir
than the evaluation ofC(t), is still more efficient.

The data are a set of 7212 hard x-ray peak flaring ev
times obtained from the BATSE/CGRO~Burst and Transient
Source Experiment aboard the Compton Gamma Ray ob
vatory satellite! solar flare catalog list. The data is a 9-ye
series of events from 1991 to 2000. If the timeDt between
two consecutive solar flares is expressed in seconds,
range goes from 45 to 10 000 000 sec, as shown in Fig
Figure 3 shows the rate of solar flares per month from Ap
1991 to May 2000. The set of data studied here concern
time period of 9 years, and, consequently, a large part of
whole 11-year solar cycle. Figure 3 shows that during a la

FIG. 2. The original sequence of the solar flares, waiting tim
Note the logarithmic scale of ordinates.

FIG. 3. Number of solar flares per month from April 1991
May 2000.
3-5
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portion of this 11-year cycle the flare rate undergoes
changes, thereby significantly departing from the unifo
distribution. Furthermore, it is worth remarking that,
shown by Fig. 4, the 11-year solar cycle is not a mere h
monic oscillation with the period of 11 years, but a compl
dynamic process with many components.

The direct evaluation of the waiting-time distributio
c(t), needs the data to be distributed over many bins w
the same size. When only a few data are available, the
size cannot be too small, and, in turn, the adoption of bins
large size can produce incorrect power-law indices. In p
ceeding with the direct evaluation of the key parameterm,
first of all, we have to adopt a proper criterion to determ
the sizeD i of the i th bin. We note that the waiting-time
distribution is expected to be an inverse power law. If
adopted bins of equal size, those corresponding to la
times would collect a very limited amount of data, there
resulting in a nonreliable evaluation of the frequencies.
bypass this difficulty we adopt bin sizes that are constan
the logarithmic scale. This means thatln(t i)2 ln(t i 21),
wheret i and t i 21 are the middle times of two consecutiv
bins, is constant. We define the width of thei th bin asD
5t i2t i 21, thereby making it become an exponentially i
creasing function of the sequence position, so as to wid
compensate for the density decrease. In this represent
the probability densityc(t i) is expressed by

c~t i !5
Ni

ND i
, ~23!

whereN is the total number of data points,Ni is number of
points located within thei th bin, andD i , as earlier said, is
the width of thei th bin.

The fitting is done by using the prescription of a pow
law of the type of Eq.~11!,

c~t!5
A1

~T1t!m
, ~24!

FIG. 4. The solid curve was obtained by using the maxim
entropy method@22#.
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with A1 , T, and m being three independent fitting param
eters. It is worth noting that the normalization condition r
duces the three independent parameters to two, as made
by Eq. ~11!, which is a function of only T andm. We find it
to be more convenient to adopt three independent fitting
rameters, with the understood proviso that the departure
A1 from the value (m21)Tm21 can be interpreted as a wa
to estimate the inaccuracy of the adopted fitting procedu

The fitting is done by using an implementation of th
nonlinear least-squares~NLLS! Marquardt-Levenberg algo
rithm @22#. The NLLS algorithm may not give unique value
for the fitting parameters. It needs initial guesses for the f
parameters and the final results may change or be affecte
huge errors. This fitting procedure yieldsT58787, m
52.1260.32, andA1531 006. The evaluated value ofA1 is
not far from the value 29 236 that would be required by t
normalization condition. However, there are very large err
of the order of 100%, with an error on the parameterm of the
order of 15%, thereby implying 1.80,m,2.44. This means
that the result of this fitting procedure would prevent us fro
assessing the important question raised in Sec. III on whe
the process is stationary or nonstationary. The large erro
this procedure depends upon the initial values assigned to
three fitting parametersT, m, andA1, whose choice requires
a more efficient criterion. It also depends on the fact t
there are oscillations around the fitting curve, as clearly
lustrated by Fig. 5.

As earlier mentioned several times, a more accurate fit
is obtained using the functionC(t). Again we do not pay
attention to the normalization constraints and we adopt
following fitting function:

C~t!5A2S 1

T1t D m21

. ~25!

As shown by Fig. 6, the fitting of the real data is now mu
more accurate than that of Fig. 5. The fitting parameters u
are A2530 657616 590, T584226500, m52.144
60.05. This sets on the key parameterm the constraint
2.094,m,2.194, which has the very attractive property

FIG. 5. The waiting-time distributionc(t) as a function oft.
The crosses refer to real data. The dashed line is the fitting func
of Eq. ~24! with A1531 006,T58787, andm52.12.
3-6
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DIFFUSION ENTROPY AND WAITING TIME . . . PHYSICAL REVIEW E 65 046203
establishing the stationary nature of the dynamic model
hind the solar flares fluctuations. The results of this sea
for m, based on the direct evaluation ofc(t) and on the use
of C(t), are summarized in Table I. We note that the unc
tainty interval associated with the use ofC(t) is contained
within the wider uncertainty interval produced by the use
c(t). This means that we are coming closer to the real va
of m. The width of the uncertainty interval will be furthe
reduced by using the DE method.

VI. DIFFUSION ENTROPY OF SOLAR FLARES

This section is devoted to the analysis of the solar fla
data by means of the DE method. The final result will
given bym52.13860.01, namely, a value form even more
accurate than that obtained in Sec. V by usingC(t). We
shall prove also that the DE method allows us to estab
some aspects of the dynamics behind solar flares that w
be overlooked by an analysis based only on the use of
waiting-time distribution.

The first issue that we have to solve is how to process
data so as to apply the three walking rules of Sec. IV. T
data accessible to us are the timest i5t i2t i 21, with t i and
t i 21 denoting the time of occurrence of thei th and the (i
21)th solar flare, respectively. However, the direct adopt
of these numbers would result in technical difficulties th
are bypassed by referring ourselves to the new sequenc
numbers

b j5IntFDt j

L G11, ~26!

where Int@x# denotes the integer part ofx. The adoption of
L51 would be virtually equivalent to referring ourselves

FIG. 6. C(t) as a function oft. The crosses refer to real da
and the dashed line denotes the fitting function of Eq.~25! with
A2530 567,T58422, andm52.144.

TABLE I. Results of search form.

c(t) C(t)

1.80,m,2.44 2.094,m,2.194
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the original sequence of numbers. However, preliminary
als with changing values ofL led us to conclude that ther
are problems with the adoption of both excessively small a
excessively large values ofL. The adoption of excessively
small values ofL would make the computer analysis to
slow and would require an excessively large amount of co
puter memory. This is the reason why we cannot use
original sequence of numbers. The adoption of excessiv
large values ofL, on the other hand, would produce stat
tical saturation, and a consequent subdiffusion process
would not accurately reflect the dynamics behind the da
We adopted the criterion of using the largest value ofL
compatible with negligible saturation effect. Preliminary a
tempts made it possible for us to assess that this conven
value is given byL53600.

After processing the data, we have to realize the th
walking rules of Sec. IV. We note that according to the p
scription of Sec. II, diffusion is generated by the rando
walker jumping at any time step. The random walker mak
jumps of intensityuj i u, ahead or backward, according
whetherj i.0 or j i,0. Thus, we create a new sequencej i ,
of 0’s and 1’s, with the following prescription. We consider
sequence of infinite empty sites, labeled by the integer in
i, considered as a discrete time, running fromi 51 to i 5`.
We divide this sequence into patches of widthb j . The first
patch consists of the sitesi 51, i 52, . . . ,i 5b1, the sec-
ond patch consists of the sitesi 5b111, b112, . . . ,b1
1b2, and so on. We assign the value 0 to all the sites of
same patch but the last site. This means that the ran
walker walks only at the end of the patch, namely, at
occurrence time of an event. To apply Rule~1!, with the
random walker always moving in the same direction,
always assign to the last site of a given patch the value o
To apply Rule~2! we assign to the last site of any patc
either the value 1 or the value21, according to the coin
tossing rule. The coin tossing prescription is realized by
ing a random number generator. To reduce the risk of ar
cial periodicity we create ten different sequences, each
responding to a different random distribution of 1’s an
21’s. For any sequence we run the DE method and then
make the average over the ten resulting DE curves. To ap
the Rule~2!, which will be shown in action in Sec. VII C, we
have to identifyj i with b i .

The DE results obtained applying Rule~1! are illustrated
in Fig. 7. This figure shows one of the benefits of the D
method. According to Rule~1!, we have to use the prescrip
tion of Eq. ~19!. The most accurate of the values ofm, dis-
cussed in Sec. V, ism52.144. This value, being smaller tha
3 and larger than 2, makes us adopt the formulad51/(m
21), and yields the scaling parameterd50.874, which is
the slope of the straight line of Fig. 7.

This theoretical prediction implies that the timest i of the
sequence$t i% are not correlated with each other. In the sp
cific case of seasonal periodicity described by harmonic
cillations, the numerical results of Ref.@8# prove that the
scaling detected by the DE, as well as by other method
detect scaling, is higher than the Brownian motion scal
d50.5. This is so even when there is no correlation in ad
tion to seasonal periodicity. We eliminate this effect, by sh
3-7
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PAOLO GRIGOLINI, DEBORAH LEDDON, AND NICOLA SCAFETTA PHYSICAL REVIEW E65 046203
fling the data. The DE method can be applied to both
original sequence ofb i and to the shuffled sequence. If th
DE yields two different curves, this is a proof of the fact th
there is memory in the original sequence. This is an imp
tant property that cannot be revealed by the analysis of
waiting-time distributionc(t). Figure 7 shows that this is
the case. In fact we see that the DE curve correspondin
the shuffled data, after the transition region at short time
before saturation, has a slope distinctly smaller than
curve referring to the nonshuffled data. Furthermore,
slope is closer to the slope of the straight line correspond
to the finding of Sec. V, which yieldsm52.144, and, conse
quently, according to Eq.~19!, d50.874. However, both
shuffled and nonshuffled data yield saturation effects a
time scale of the order oftsat51500 h. These saturatio
effects set limits to the accuracy of the determination of
value ofm by means of the DE method.

In Fig. 8 we illustrate the results obtained by using Ru
~2!. It is remarkable that in this case the shuffled data yie
with the DE method, an entropy increase faster~rather than
slower! than the nonshuffled data. This is a consequenc
the fact that in this case the deviation from ordinary diff
sion, produced by time periodicity, would generate su
diffusion rather than superdiffusion. We notice that the d
ference between the shuffled and nonshuffled curve
smaller than in the case of Fig. 7@Rule ~1!# and that the
saturation effects show up at later times. We thus concl
that Rule~2! is much less sensitive to periodicities and
saturation effects than Rule~1!.

VII. A FURTHER IMPROVEMENT: USE OF ARTIFICIAL
SEQUENCES

We have seen that the DE method reveals the existenc
memory effects that are overlooked by the direct evalua
of the waiting-time distribution. However, as pointed out
Sec. II and illustrated by the numerical results of Sec. VI,

FIG. 7. DE as a function of time according to Rule~1!. The
dotted straight line illustrates the slope of entropy increase co
sponding tom52.144, andd50.874, which is the best value ofm
afforded by the analysis of Sec. V. The dashed line is the DE cu
generated by the nonshuffled real data. The solid line is the
curve generated by the shuffled real data.
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time region where the DE method might be fruitfully used
detect scaling, is reduced to an intermediate time region,
ter the transition from dynamics to thermodynamics, and
fore the saturation effects. This has the unwanted effec
setting limitations to the accuracy of the DE method.
bypass this difficulty we generate artificial sequences w
the same statistical limitations of the real data, and then
search for the parameterm that establishes the most accura
fitting with the DE curves derived from real data.

To make this procedure as reliable as possible we proc
as follows. We assume thatc(t) has the form

c~t!5
A

~T1t!m
, ~27!

whereT andm are our fitting parameters. The constantA is
determined by the normalization condition through

1

A
[E

45

` 1

~T1t!m
dt. ~28!

The fitting parameters are made to change around the m
values established by the results of Sec. V, which yieldm
52.14460.05 andT584226500. Note that in the real dat
no time exists with a value smaller thant545 sec. This is
the reason why the integration in Eq.~28! is done from 45 to
` rather than from 0 tò . The number of data available t
us are 7211. Thus we produce 7211 values oft i , according
to the prescription

t i5F 1

~T145!m21
2

~m21!yi

A G2T, ~29!

with the numberyi randomly selected in the interval@0,1#. It
is straightforward to prove that the resulting distribution oft i
is the same as that of Eq.~27! and fits the condition of Eq.

e-

e
E

FIG. 8. DE as a function of time according to Rule~2!. The
dotted straight line illustrates the slope of entropy increase co
sponding tom52.144, d50.5, which is the best value ofm af-
forded by the analysis of Sec. V. The dashed line is the DE cu
generated by the nonshuffled real data. The solid line is the
curve generated by the shuffled real data.
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DIFFUSION ENTROPY AND WAITING TIME . . . PHYSICAL REVIEW E 65 046203
~28!. At this stage we are ready to compare the DE cur
generated by the artificial data to the DE curves generate
the real data, using both Rule~1! and Rule~2!. The compari-
son is made with the DE curves corresponding to shuf
data, since the artificial sequences are generated without
relation among the numberst i .

Let us discuss first the results concerning Rule~1!. These
results are illustrated in Figs. 9. In Fig. 9~a! we show the
effect of changingm in the interval@2.094,2.194#, with T
58422 and in Fig. 9~b! we show the effect of changingT in
the interval@7922,8922#, with m52.144. We see that the DE
curves of the artificial sequences fluctuate within an er
strip containing the DE curve of the real data. The size
this error strip increases upon change of time and we see
the spreading caused by the change ofT is much smaller than
that caused by the change ofm. From a qualitative point of
view, the results concerning Rule~2!, shown in Figs. 10~a!
and 10~b!, are very similar.

FIG. 9. DE as a function of time according to Rule~1!. The two
solid curves denote the DE curve corresponding to the shuffled
data. ~a! The vertical bars indicate the changes of the DE cur
resulting from the artificial sequences described in the text witT
58422 andm moving in the interval@2.094, 2.194#. ~b! The vertical
bars indicate the changes of the DE curves resulting from artifi
sequences described in the text withm52.144, andT moving in the
interval @7922, 8922#.
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A. A more accurate measurement ofµ

We have seen that the area of theT-error strip is signifi-
cantly smaller than that of them-error strip, at least five
times smaller. Therefore, we can improve the accuracy om
by assigning toT a fixed value and looking for the value o
m ensuring the best fitting of the real data. We assign toT the
value of 8422, and we proceed with the search for the b
fitting. The results are illustrated in Figs. 11~a! and 11~b!.
The result concerning Rule~1! is good, as seen in Fig. 11~a!.
As expected, Fig. 11~b! shows that the result concernin
Rule ~2! is even better, and we think that it can be judged
be excellent. This extremely accurate result is due to the
curve of the artificial sequence coinciding with the DE cur
of real data over the wide range of 1000 h of diffusion. O
the basis of this excellent fitting, we conclude that

m52.13860.01. ~30!

al
s

al

FIG. 10. DE as a function of time according to Rule~2!. The
two solid curves denote the DE curve corresponding to the shuf
real data.~a! The vertical bars indicate the changes of the DE cur
resulting from the artificial sequences described in the text withT
58422 andm moving in the interval@2.094, 2.294#. ~b! The vertical
bars indicate the changes of the DE curves resulting from artifi
sequences described in the text withm52.144, andT moving in the
interval @7922, 9922#.
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B. Nonshuffled data and an artificial sequence
with suitable memory

In Sec. VI, we have noticed that the result of the D
analysis depends on whether the real data are shuffled or
We think that in the original data there are signs of the
year solar cycle and other subcycles. This makes it harde
establish a connection between the scalingd and the power
index m. However, if our conclusion thatm52.13860.01 is
correct, it should be possible to fit the DE curve of the no
shuffled original data with no further change of the fittin
parametersT and m, provided that we sort the artificial se
quence in such a way as to mimic the solar periodic
Rather than doing that with a model, for instance, a suita
modulation of the parameterl of Eq. ~12!, we proceed in a
more direct way, according to the following procedure. L
us call Ri and Ai the i th numbers of the real and artificia
sequence used in Sec. VII A, respectively. Thei th number of
the sorted artificial sequence is denoted bySi . The subscript
i ranges from 1 toN. The numberS1 is fixed by selecting
from the set ofAi ’s the number that is closest toR1, this
being, let us sayAj (1) . We thus setS15Aj (1) . The number
Aj (1) is eliminated from the artificial sequence. Then, w

FIG. 11. DE as a function of time. The solid lines denote the
curve generated by the shuffled real data, and the dashed
which almost coincide with the solid lines, denote the DE curv
resulting from the artificial sequence withm52.138 andT58422.
~a! Rule ~1!. ~b! Rule ~2!.
04620
ot.
-
to

-

.
le

t

move toR2 and from the set of the remainingN21 numbers
of the artificial sequence we select the closest one to it,
being, let us sayAj (2) . We proceed with the same criterio
until we exhaust all the numbers of the artificial sequence
is evident that the adoption of this procedure assigns to
artificial data a time order reflecting the complex dynam
illustrated by Figs. 2 and 3.

At this stage, we evaluate the corresponding DE cu
and we compare it to the DE curve generated by the n
shuffled real data. As earlier mentioned, the sorted artifi
data are the same as those used to produce the exce
fitting of the DE curves derived from the shuffled origin
data. Thus, the fitting parameters are the same as those
for Figs. 11. We illustrate the result in Figs. 12, which sho
that the fitting accuracy is as good as@and for Rule~1! even
slightly better than# the fitting of Figs. 11. This is a very
remarkable result since Figs. 7 and 8 show that shuffling
data produces a significant effect. Thus, Figs. 11 and
prove that the memory of the data is totally under o
control.

es,
s

FIG. 12. DE as a function of time. The solid lines denote the D
curve generated by the unshuffled real data, and the dashed
which almost coincide with the solid lines, denote the DE curv
resulting from the artificial sequence withm52.138 andT58422
with a modulation mimicking the influence of the 11-yr solar cyc
~a! Rule ~1!. ~b! Rule ~2!.
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DIFFUSION ENTROPY AND WAITING TIME . . . PHYSICAL REVIEW E 65 046203
C. Third rule in action

According to Lepreti, Carbone, and Veltri@23# the
waiting-time distributionc(t) is already Le´vy. This would
imply that the adoption of the third rule yields an infinite
fast transition from dynamics to thermodynamics. This is
because Le´vy distribution is stable and the convolution b
tween two distinct Le´vy distributions is a Le´vy distribution
@16#. According to our analysis,c(t) is a shifted inverse
power law. It is plausible that the difference between
shifted power-law distribution of Fig. 5 and the Le´vy distri-
bution of Ref.@23# is small. Consequently, the transition
thermodynamics is expected to be very fast. This expecta
is confirmed by the numerical results illustrated in Fig. 1
The transition to the scaling regime is so fast that it is p
sible to detect a wide regime of linear dependence of
entropy on logl , which allows us to derive form the value
m52.138, in total agreement with the conclusion of the e
lier analysis done by means of Rules~1! and~2!. We see that
in this case the memory of the nonshuffled data yieldsd
slightly larger than the scaling parameter of the shuffled d
The adoption of Rule~3! implies a statistical accurac
smaller than that of the other two rules, due to fact there is
limitation to the jumps intensities, thereby decreasing
number of particles located in the same cell. This has
effect of making the evaluation ofpi and consequently tha
of the entropy less accurate. However, this disadvantag
widely compensated by the emergence of a much more
tended scaling region that yields as a result a value ofm fully
confirming that of the other two rules.

VIII. CONCLUDING REMARKS

We see that the uncertainty about the value ofm for solar
flares has been significantly reduced. The current literatur
we give the same credit to all the authors, yields values om
ranging from 3 to 1.7. We provide the compelling conclusi

FIG. 13. DE as a function of time, according to Rule~3!. The
solid lines denote the DE curve generated by the shuffled real d
The dotted straight line illustrates the slope of entropy increasd
50.879, which corresponds tom52.138. The dashed line denote
the DE curve resulting from the unshuffled real data. Note the
perdiffusion of the unshuffled real data DE due to the memory
the original signal.
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thatm52.13860.01. However, this is not the main result o
his paper. We think that this paper shows that the DE met
is a remarkably accurate technique of analysis that g
much beyond the direct evaluation of the waiting-time d
tribution c(t). This is so because complex processes
characterized by two different kinds of memory. Th
memory of the first kind is the main object of the resear
work done in the field of the science of complexity. To ma
clear the nature of this kind of memory, let us recall@24# that
a Markov master equation, namely, a stochastic process w
out memory, is characterized by a waiting-time distributi
c(t) with an exponential form, thereby implying memor
for a marked deviation from the exponential condition. Th
is why the search for an inverse power-law distribution w
a finite value ofm ~the exponential distribution meansm
5`) can be interpreted as a search for memory. This is
memory of the first kind, to which the prescriptions of Re
@9# are referred. For real data, in addition to this form
memory, another type of memory might be present, deno
by us as memory of the second type, under the form
correlation among the valuest i . In this paper we have see
that this second form of memory is given, in this case, by
11-yr solar periodicity. It is possible that this form of add
tional memory is present in many other complex proces
for different reasons. It is also evident that it is difficult,
perhaps impossible to reveal this form of additional mem
by means of the direct evaluation ofc(t). This paper proves
that the joint use of the direct evaluation ofc(t) @or of
C(t)# and of the DE method is a very useful supplement
the ordinary technique, and that it can be profitably used
shed light on the dynamics behind the time series gener
by complex processes.

This paper yields a convincing conclusion concerning
distinction between two possible forms of nonstationary
havior. As pointed out in Sec. III, the claim that the waitin
time distributionc(t) has the form of Eq.~11! is equivalent
to assuming that the dynamics of the flaring process is dri
by the model of Eq.~12! with the assumption that the trajec
tories are injected back randomly. This is a stationary mo
that in the case wherez.2 (m.2), would be incompat-
ible with the existence of an invariant distribution@7# and
consequently with ‘‘thermodynamic equilibrium.’’ The inac
curacy of the analyses done by earlier work in this fie
would prevent us from distinguishing this form of nonst
tionary behavior from a genuine form of nonstationary b
havior. By genuinely nonstationary behavior, we mean
existence of rules changing with time. This form of gen
inely nonstationary behavior might be modeled, for instan
by assuming that the parameterl of Eq. ~12! is time depen-
dent. If we make the assumption that the time dependenc
l has a period of 11 years, and we make our analysis ov
period of time, that is, not much larger than this time perio
as we have done, then the process must be perceived as
genuinely nonstationary. Our analysis is so accurate a
rule out the former form of nonstationary behavior and
detect significant effects stemming from the latter,
equivalently, from the existence of the memory of the seco
type.

The original motivation for this paper has been to show
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PAOLO GRIGOLINI, DEBORAH LEDDON, AND NICOLA SCAFETTA PHYSICAL REVIEW E65 046203
action the method of entropic analysis recently developed
our group@8–10#, so as to afford indisputable results th
might help the researcher of this field to establish whet
the proponents of self-organized criticality@25# or those of
turbulence@3,4# are right. Let us try to reach a conclusion o
this issue, on the basis of the results of this paper. The
namical model of Sec. III is inspired by the models of tu
bulence, but we mainly use it to generate artificial sequen
mimicking the real ones with no claim that it is an exhaust
picture of the dynamics behind solar flares. The fitting of F
6 seems as good as the fitting of Fig. 1 of Ref.@23#. How-
ever, our analysis does not rest only on the waiting-ti
distribution. In a very recent paper Wheatland@26# criticized
the work of Ref.@23# as being based on the assumption t
the rate of solar flares is constant. This is not so, as show
Fig. 3. On the other hand, modeling the time dependenc
this rate is not easy, since it does not correspond only
11-yr periodic motion but to a much more complex con
tion, as illustrated in Fig. 4. In fact, this figure shows th
there are many other components in action. This is the rea
why we decided to mimic the time dependence of the so
flare rate sorting the artificial sequence in the way descri
in Sec. VII B. We found that this yields a fitting with the re
data as good as the fitting between the DE curve produce
the artificial sequence, with no sorting induced memory, a
the DE curve produced by the shuffled real data. This is
our opinion, a strong indication that the value ofm52.138 is
a genuine property of real data. In principle, this compell
conclusion would not rule out the adoption of a modula
Poisson process of the same kind as that advocated
Wheatland@26#. This is so because, as shown in Ref.@27#,
the time modulation of a Poisson process can also yieldm
,3 as well asm53, as in the work of Wheatland@26#. In
other words, using the terminology adopted in this paper,
cannot rule out the possibility that only memory of the se
ond type is responsible form52.138. On the other hand
Lepretiet al. @23# applied a test for local Poisson hypothes
and they claim that this proves a departure of flare statis
from a local Poisson distribution. Under this condition
seems to be difficult to derivem52.138 from a local Poisson
C.

i,

i,
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statistics with the modulation produced by the solar cycle
In our notation, the power index found by the authors

Ref. @23# is m52.38, a value that turns out to be compatib
with the uncertainty interval associated with the determi
tion of m by means of the direct evaluation ofc(t). Our
analysis establishes a connection with Le´vy statistics, in ac-
cordance again with the conclusions of Ref.@23#. However,
we adopt a perspective that is different from that of the
thors of Ref.@23#. Our diffusion process reaches the Le´vy
regime after the process of transition from dynamics to th
modynamics that has been discussed in detail in the ea
sections. This process is very fast if Rule~3! is adopted, but
it is not infinitely fast as in the perspective of the authors
Ref. @23#, who assume the waiting-time distributionc(t) to
obey already the Le´vy statistics. We do not rule out the pos
sibility that c(t) is a stretched exponential@19#. In fact, a
stretched exponential would not conflict with the attainme
of Lévy statistics in the long-time limit of the diffusion pro
cess. Although a truncation ofc(t) at large values oft
generates a finite second moment, and consequently Ga
ian statistics in the long-time limit, the transition to the co
ventional thermodynamic regime is ultraslow@20#. It is
known @21# that a much earlier transition to Le´vy statistics
occurs and that the Le´vy regime lasts for a very extende
period of time. The transition to the Gaussian regime pr
ably takes place at times much larger than the satura
time, and might be made visible only in the ideal case
infinitely large sequences.

In conclusion, with all the earlier warnings in mind, w
can conclude that the statistical analysis of this paper le
support to the turbulence perspective. We hope furtherm
that this paper affords a criterion of analysis that might h
to settle not only that of solar flares, but also other delic
issues concerning complex systems.
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