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Diffusion entropy and waiting time statistics of hard-x-ray solar flares
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We show at work a technique of scaling detection based on evaluating the Shannon entropy of the diffusion
process obtained by converting the time series under study into trajectories. This method, called diffusion
entropy, affords information that cannot be derived from the direct evaluation of waiting times. We apply this
method to the analysis of the distribution of time distanceetween two nearest-neighbor solar flares. This
traditional part of the analysis is based on the direct evaluation of the distribution fungfin or of the
probability ¥ (7), that no time distance smaller than a givers found. We adopt the paradigm of the inverse
power-law behavior, and we focus on the determination of the inverse power pdeithout ruling out
different asymptotic properties that might be revealed, at larger scales, with the help of richer statistics. We
then use the DE method, with three different walking rules, and we focus on the regime of transition to scaling.
This regime of transition and the value of the scaling parameter i&elfiepends on the walking rule adopted,

a property of interest to shed light on the slow process of transition from dynamics to thermodynamics often
occurring under anomalous statistical conditions. With the first two rules the transition regime occurs through-
out a large time interval, and the information contained in the time series is transmitted, to a great extent, to it,
as well as to the scaling regime. By using the third rule, on the contrary, the same information is essentially
conveyed to the scaling regime, which, in fact, emerges very quickly after a fast transition process. We show
that the DE method not only causes to emerge the long-range correlation with gugiv@nand so a basin of
attraction different from the ordinary Gaussian one, but it also reveals the presence of memory effects induced
by the time dependence of the solar flare rate. When this memory is annihilated by shuffling, the scaling
parameters is shown to fit the theoretically expected function @f All this leads us to the compelling
conclusion thaju=2.138+0.01.
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[. INTRODUCTION pu=2 are critical values. In fact, we note that moving from
u>3 to u<3 is equivalent to a phase transition from the
The study of solar flares is becoming popular among the&Saussian to the lwy basin of attraction/6], and moving
researchers working at the frontier of statistical mechanicsirom x>2 to u<2 implies a transition from the condition
due to the widely shared conviction that they are a signaturef Lévy statistics to a form of out of the equilibrium regime
of a significant departure from the condition of ordinary [7]. Thus, an uncertainty larger than the distance of the bor-
Brownian motion[1-4]. As pointed out by Wheatlangb],  der =2 from the borderu=3 is judged by us to be an
the distribution of times between flares, gives information onunsatisfactory condition that might delay the settlement of
how to model flare statistics. In this paper we shall be referthe issues concerning the complex dynamics underlying the
ring to these times, denoted by us with the symhohs the  waiting-time statistics. The main purpose of this paper is to
time distance between two consecutive events, and the coilfustrate a statistical method of analysis that yields a reliable
responding distribution density will be denoted $#¢7). Al-  value for the power index.. We hope that this result might
though the agreement on the fact that flare statistics depaple useful for the researchers in this interesting field of inves-
from ordinary statistical mechanics is general, there seems tggation and at the same time might be beneficial, in general,
be the still unsettled issue of what is the proper model thafor all those who are interested in the statistical analysis of
will account for this form of anomalous statistics. Does thistime series.
form of statistics reflect self-organized criticality or turbu-  The outline of the paper is as follows. In Sec. Il we re-
lence[3]? We think that the settlement of this delicate issueview the method of diffusion entropyDE) that will be a
is made difficult by the fact that, although many authorscrucial step of the statistical analysis done in this paper. Al-
claim thaty(7) is an inverse power law with power indgx  though the method has been applied somewherd &!s&Q],
the actual value of. still seems to be uncertain. In fact, the we will present a short review in order to make this paper as
authors of Ref[1] proposeu=1.7 and those of Refl2]  self-contained as possible. In Sec. Ill, we illustrate a dynami-
claim that u=2 is the proper power-law index. Boffetta cal model that, in general, results in time sequences that are
et al. [3] proposeu=2.4. Finally, Wheatland explains the statistically equivalent to those observed in real data. This
origin of the power-law behavior with a model yielding model is not limited to the case of inverse power laws, but
n=3.0[5]. here we make the assumption that the shifted inverse power
As will be made clear by the theoretical analysis of thislaw is an ideal condition convenient for analyzing solar
paper, it is possible to prove, without taking a position on theflares, and we study the explicit form emerging from this
origin of the inverse power-law behavior, that=3 and condition. In Sec. IV, we illustrate three walking prescrip-
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tions that will be used to convert the real data into randoniThe easiest way to proceed with the choice of the cell size
trajectories. The benefit of adopting several walking pre-(l), is to assume it to be independent aind determined by
scriptions was discussed in R¢®]. Here we introduce two a suitable fraction of the square root of the variance of the
additional rules and we apply both of them as well as one ofluctuationé(i). In the case in which the numbegsare +1,
those introduced in Ref9]. In Sec. V we prove that the 0, and—1, e=1 is the natural choice.

numerical evaluation of the probability of getting a waiting  Before proceeding with the illustration of how the DE
time larger than a given yields a value forw more accurate  method works, it is worth making a comment on how to
than that afforded by the waiting-time distributigi(7). In  define the trajectories. The method we are adopting is based
Sec. VI we show how to process the data to make an efficiendn the idea of a moving window of size¢hat makes thath

use of the DE method. In Sec. VII we use the DE method tarajectory closely correlated to the next, treH(1)th trajec-
further reduce the error of Sec. V. We devote Sec. VIII totory. The two trajectories have- 1 values in common. It is

concluding remarks. worth making a comparison with the technique of detrended
fluctuation analysis(DFA) [11]. The DFA is a popular
Il. DIFEUSION ENTROPY method of scaling analysis, aiming at detecting the long-

range correlations in seemingly nonstationary time series that
The main idea of this approach to scaling is remarkablyin the last few years has been used in more than 100 publi-
simple. Let us consider a sequenceMdhumbersé;(t) with  cations[12]. The DFA is based on nonoverlapping windows,
i=1,... M.The purpose of the DE algorithm is to establishand, consequently, trajectories with different labels are to-
the possible existence of a scaling, either normal or anomaally independent from one another. The motivation for using
lous, in the most efficient way as possible without alteringoverlapping windows, with the DE method, is given by our
the data with any form of detrending. Let us select first of allwish to establish a connection with the Kolmogorov-Sinai
an integer numbel, fitting the condition E=I<M. This in-  (KS) entropy[13,14]. In Sec. Il we shall make further com-
teger number will be referred to as “time.” For any given ments on this connection. The KS entropy of a symbolic

time | we can findM — | +1 subsequences defined by sequence is evaluated by moving a window of dizdong
the sequence. Any window position corresponds to a given
gi(S)EgHS, s=0,... M—I. ) combination of symbols, and from the frequency of each

combination it is possible to derive the Shannon entropy

For any of these subsequences we buildup a diffusion trajecX!). The KS entropy is given by the asymptotic limit
tory, labeled with the index, defined by the position lim,_..S(I)/I. We believe that the same sequence, analyzed
with the DE method, at the large valueslofvhere a finite

[ [ KS entropy shows up, must yield a well-defined scalihg
xO)=> 9= &.. (2)  To realize this correspondence we carry out the determina-
i=1 i=1 tion of the DE by using the same criterion of overlapping
windows as that behind the KS entropy.

Let us imagine this position as referring to a Brownian Details on how to deal with the transition from the short-
particle that at regular intervals of time has been jumpingime regime, sensitive to the discrete nature of the process
forward or backward according to the prescription of theunder study, to the long-time limit where both space and time
corresponding subsequence of Et). This means that the can be perceived as continuous, are given in Ri&f]. Here
particle before reaching the position that it holds at tihes ~ we make the simplifying assumption of considering large
been makind jumps. The jump made at théh step has the enough times as to make the continuous assumption valid. In
intensity |§i(5)| and is forward or backward according to this case, the trajectories, built up with the above-illustrated

whether the numbefi(s) is positive or negative. procedure, correspond to the following equation of motion:
We are now ready to evaluate the entropy of this diffusion dx
process. To do that we have to partition thaxis into cells g (5)
5=,

of sizee(l). When this partition is made we have to label the

cells. We count how many particles are found in the same . .
cell at a given timd. We de{m?te this number By;(1). Then whereé(t) denotes the value that the time series under study
. i(n.

we use this number to determine the probability that a pargetS at thdth site of the sequence under study. This means

ticle can be found in théth cell at timel, p;(1), by means of that the timet=| (W'th |>.1) IS thou_ght of as a COHFIHUOUS
and that the functioré(l) is a function of this continuous

time. In this case the Shannon entropy reads

(= (3)
pilh)=—=—""77-
M—1+1) *
( S(t)z—fﬁ ‘dxp(x,t)ln[p(x,t)]. (6)
At this stage the entropy of the diffusion process at tinge
determined and reads We also assume that
1 X
Su(==2 pi(InCpi(H] 4 POuD= 55 F| @)
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and that~(y) maintains its form, namely that the statistics of determine the scaling by a direct use of E8), with 5(t)
the process is independent of time. Let us plug &f.into  assuming the time independent value of the thermodynamic

Eq. (6). Using a simple algebra, we get limit.
S(1)=A+8(7), ) IIl. DYNAMIC MODEL
where The solar flares analyzed in this paper are perceived as a
sequence of events occurring at unpredictable timewith
B * i=1,... M, whereM is the label of the last event consid-
A== | dyR(y)In[F(y)] 9 ered. We do not take into account the intensity of these

events, which will be studied somewhere else. Thus, the
most important property for us to study, is the time distribu-
tion densityy(7), with 7 denoting the time distance between
r=In(t). (100  two nearest-neighbor eventg=t; ., —t;. Let us make the
assumption that the experimental analysis of the time series

The assumptions made to get the result of @yare not  Yields the form
correct during the transition process, and consequently the
DE method can be used as a reliable way to detect scaling
only in the long-time limit. The DE can be used, however, to (r)=(u—1) (T+ )"
shed light into the regime of transition that is deeply con-
nected with the foundation itself of statistical mechanics. Ac-
cording to Khinchin[15] the central limit theorem is funda-
mental for the realization of canonical equilibrium. As well

and

T

11)

We make the key assumption that the numberare un-
correlated. As we shall see, the theory of this paper affords
_ also a criterion to assess if this crucial assumption is correct
known, a process resulting from the sumMfindependent o ot nder this key assumption we can buildup a dynamic
variables yields a Gaussian distribution, provided tNa6 1o e that is statistically equivalent to the solar dynamics

large and the single variables have a probability diStrib“tiO’benerating the sequence of this. Let us consider the dy-
with a finite second moment. A physical process makihg [ mic process '

increase from values of the order of unity to values so large
as to fit the prediction of the central limit theorem can be dy/dt=\y?, (12)
perceived as a transition from the microscopic to the macro-
scopic regi.me, where thermodyna_m?cs applies. If the microyith 2~1. Let us imagine that the trajectopy(t) moves
scopic variables do not have a finite second moment, t@iin the interval[0,1]. Let us assume also that when the
ordinary central limit theorem must be replaced by the genyaiactory reaches the right border of this interval it is in-
eralized central limit theoreffL6] and in the limiting case of jocteq back within this interval by means of a random selec-
N—o we find Levy rather than Gauss statistics. We canyion of the initial positiony(0). The random selection is
generalize the point of view of Khinchin and consider also ingq,qo by using a random number generator that assigns the
this case the process of t_rgnsition ltirom §ma|| to_Iarge same probability to the numbers of the intery8l1]. The
values as a form of transition from the microscopic 10 thecqnnection between the initial condition and the exit time
thermodynamic regime. is given by

Due to the nature of the DE method, the roleNois here
played by the “time”t. The microscopic regime refers to the y(0)=[1+ (z— LA r]~ WD), (13)
fluctuation of¢; and the macroscopic regime corresponds to
the qu_ctuatlons of the dlffu5|on_ coordmate{_t). The time This leads immediately to the distribution of Ed1) with
evolution of §(t) towards the final value, independent of
time, reflects the transition from dynamics to thermodynam-
ics. =— (14

We shall adopt three different walking rulesee Sec. IV.
The first two rules are characterized by an extended regime
of transition from dynamics to thermodynamics. Notice thatand
the real data available are finite, thereby producing saturation
effects in the long-time regime. Consequently, the region T k-1 (15)
where the ideal scaling shows up, is an intermediate time A
region following the extended initial transition and preceding
the long-time saturation regime. This has the effect of reduc- We are now equipped to establish a connection with the
ing the size of the time region that can be fruitfully used forentropy production per unit of time. Randomness here is in-
scaling detection. As we shall see, this is the reason why theolved at the moment of selecting the initial condition, and is
DE method must be supplemented by the use of artificiatharacterized by an unknown amount of entropy incredse,
sequences. The third rule, on the contrary, yields a fast trartf u>2, the distribution of Eq(11) yields a finite mean
sition to the thermodynamic regime, thereby allowing us towaiting time,
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T IV. ON THREE DISTINCT PRESCRIPTIONS TO WALK

(N=—. (16) : o
m—2 The scaling detected by the DE method is not independent

of the walking rules that we adopt. The outcomes of DE
It is evident then that the rate of entropy production per unitmethod are not unique, due to the dependence of the scaling
of time is given by parameters on the walking rules, and this casts doubts on
this method of analysis. However, the task of this analysis is
(u—2) an indirect evaluation of the waiting-time distributigi{ ),
T 17 or, equivalently, in the inverse power-law case, of the index
w. If we take for granted the inverse power-law structure of

Using the dynamic model it is possible to establish a mord/(7). the power index. is unique. We adopt the following

proper connection with the KS entropy. However, this is ofPrescriptions for the random walker:

no great relevance within the context of the present paper. (1) Make a jump of fixed intensity, only when you meet
Therefore, we limit ourselves to considering the entropy pro@" €vent, and do it always in the same direction.
(2) As with Rule(1) make a jump only when you meet an

duction of Eq.(17), where the subscrif stands for “exter- o . - . ) .
nal.” In fact, in the picture adopted in the present paper theevent, _but do it e_|ther in the posmv_e or negative direction
source of entropy production is the random selection of théccording to a coin tossing prescription. _

numbers of the intervdl0, 1], an action external to the pro- (3 Walk atfixed interval of times, with jumps in the same
cess under study. It has to be pointed out that this externdlirection, of intensity _proportlonal to the time distance be-
entropy production is subtly related to the KS entropy,[WEeN two nearest-neighbor events.

which, on the contrary, is interpreted as being of internal NOte that here we analyze the sequefig, where each
origin [17]. This is so because the dynamical model is a mala/alue 7; denotes the time distance between two nearest-

with a very sharp chaotic region that reduces to a set of zerg€ighbor flaresregarded as eventsThus, Ruleg1) and(2)
measure, confined to the poiyit= 1, in the limiting condition |mply that the random walker makgs instantaneous jumps at
where the idealized model of this section applies. the times of flare occurrence. With Rul8) the random

In the caseu<2 the entropy produced is provér to be ~ Walker, at imest=1.2, ... n, ..., makes jumps ahead of
the following function of time: intensity equal to Fhe values of the sequence u_nder study.
Note that Rule(l) is one of the two rules used in RéB].
Here we use Rule®) and(3). Using the theory of Ref.9],
which, in turn, essentially rests on the generalized central

. . . - . limit theorem[16] and on the work of Fellefr18], we obtain
It is evident that in the limiting case of very large time values,[he following prescriptions:

the entropy production per unit of time vanishes, thereby

hE= H

S(t)oct L, (18

implying that the conditiong =2 is a border at which a kind u—1, 1<u<?2

of phase transition occurs. In the regign-2 the dynamical U1 5 3

system of Eq(12) has an invariant distribution. In the region o= (n=1), Sp< (19
u<2 the system does not have an invariant distribufign 0.5, w>3,

From an intuitive point of view we can imagine that during
the observation process the system keeps moving towards an
equilibrium distribution, as a kind of Diraé function lo- 08(u=1), 1sp<2
cated aty=0 [7]. The time necessary to reach this invariant 02105, u>2, (20
distribution is infinite.

In conclusion, an infinitesimally small change from 54
>2 to u<2 would have the effect of annihilating the invari-
ant distribution and of making the process “nonstationary.” S=Uju-1), wu>1, (21)
The method of analysis of this paper will allow us to assess
that 4 =2.138+0.01, namely, that the solar flares fluctua- for Rules(1), (2), and(3), respectively.
tions are stationary, even if very close to the border with the Figure 1 shows clearly that the adoption of R(lgalone
“nonstationary” region. This result will be obtained by a would yield two distinct possible values far when § gets
direct evaluation ofu, supplemented by the adoption of the values within the interval0.5,1]. However, the joint adop-
DE method. As we shall see, this conclusion is reached aftefon of this and the other two rules settles this ambiguity. We
settling a major problem caused by the existence of a genwglso notice that both Rul@l) and Rule(2) reflect the phase-
ine form of nonstationary behavior; this kind of nonstation-transition character of the conditign=2, while Rule(3),
ary behavior means that the dynamic rules behind the proapparently, does not. However, we see that R@)efor u
cess under study change upon change of time. This will leaek 2 yields a value 06> 1, namely, a diffusion process faster
us to the final conclusion that the model of E42) is a  than the ballistic diffusion. This is a consequence of the non-
fairly accurate way of mimicking solar flare dynamics with stationary nature of the conditign<2.
z<2 (u>2). In Secs. VIl and VIII we shall make some It is important to stress that these rules imply that the
conjectures on how to improve this model to take into ac-numbersr; are not correlated. Furthermore, these rules rest
count the time dependence of the solar flare rate. on the assumption that the asymptotic limit ¢7) is an
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FIG. 1. 6 as a function ofu according to three rules. The solid, FIG. 2. The original sequence of the solar flares, waiting times.

dashed, and dotted lines denote RulBs (2), and(3), respectively. ~ Note the logarithmic scale of ordinates.

inverse power-law distribution with no truncation. We shall Actually, itis not so. As mentioned in Sec. |, we find that the

see that the DE method is sensitive to the correlation amon valuation of t_he probability of finding no time distance
the numbersr;, and that the 11-year solar cycle is respon- rger than a giverr, denoted by¥(7), defined by
sible for that correlation. As to the truncation of the inverse "
power law at the large distance§, this is another delicate issue V(r)= f Y(t)dt, (22)
worth of some comments. Lahereeand Sornettgl9], sug- T
gest that the stretched exponential family might have a the- ] . ]
oretical motivation stronger than the power-law distribution.iS more convenient than the direct evaluation dfr). In
On the other hand, in the intermediate time region a stretchel@ter sections we shall prove a striking property: the evalua-
exponential is indistinguishable from a power law. The twotion of u through the DE method, an approach less direct
proposed fitting functions become distinguishable one fronthan the evaluation o¥(7), is still more efficient.
the other in the long-time regime, which is affected by poor The data are a set of 7212 hard x-ray peak flaring event
statistics. However, the work of Refgo] and [21] show times obtained from the BATSE/CGR(BUI‘St and Transient
that a truncation of the power law af(7) at large times Source Experiment aboard the Compton Gamma Ray obser-
yield an ultraslow convergence to normal diffusion, with ef- vVatory satellite solar flare catalog list. The data is a 9-year
fects that are beyond the range Of Observation Of the D@eries of events from 1991 to 2000. If the timé between
analysis, due to the data statistical limitation. two consecutive solar flares is expressed in seconds, the
We shall see that both Ru(&) and Ru|e(2) y|e|d a very range goes from 45 to 10000000 Sec, as shown in Flg 2.
slow transition to the scaling regime. Due to the statisticalFigure 3 shows the rate of solar flares per month from April
limitation of our data, the scaling regime turns out to be al991 to May 2000. The set of data studied here concerns a
relatively short-time region between transition and saturatiodime period of 9 years, and, consequently, a large part of the
regime. Thus, we shall be forced to carry out our analysigvhole 11-year solar cycle. Figure 3 shows that during a large
with the help of artificial sequences with the same number of
terms as the real data, by fitting the DE curves produced by
the real data with the DE curves generated by the artificials o
sequences. The adoption of the third rule, on the contrarys |
yield a fast transition to the thermodynamic regime and, con-.—

sequently, allows us to determine directly the valueSofn a%er

500

both cases, however, the physical consequences of a possibg 300 1
truncation of the inverse power law are beyond our range of= 2|
observation. :—‘_!,‘; "
“é 150
V. STATISTICAL ANALYSIS OF THE REAL DATA: 3 o0
#(¥) AND W (7) §
Z 50
In this section we plan to derive the waiting-time distri- o . , AMA LA . .
bution () directly from the statistical analysis of the real 1991 19e2 1993 1904 19%5 y‘gga‘*r 1997 1968 1999 2000 2001

data, the x rays emitted by solar flares in the case here under
study. At first sight, one might think that a direct determina- FIG. 3. Number of solar flares per month from April 1991 to
tion of () is more convenient than any indirect approach.May 2000.
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FIG. 4. The solid curve was obtained by using the maximum FIG. 5. The waiting-time distribution/(7) as a function ofr.

entropy method22].

portion of this 11-year cycle the flare rate undergoes bin
changes, thereby significantly departing from the uniform
distribution. Furthermore, it is worth remarking that, as
shown by Fig. 4, the 11-year solar cycle is not a mere har
monic oscillation with the period of 11 years, but a complex
dynamic process with many components.

The direct evaluation of the waiting-time distribution
(1), needs the data to be distributed over many bins wit
the same size. When only a few data are available, the bin
size cannot be too small, and, in turn, the adoption of bins Of*no
large size can produce incorrect power-law indices. In pro
ceeding with the direct evaluation of the key parameter f
first of all, we have to adopt a proper criterion to determine
the sizeA; of the ith bin. We note that the waiting-time
distribution is expected to be an inverse power law. If we
adopted bins of equal size, those corresponding to larg
times would collect a very limited amount of data, thereby
resulting in a nonreliable evaluation of the frequencies. To
bypass this difficulty we adopt bin sizes that are constant in
the logarithmic scale. This means thiat(7)—In(7_,),
where 7; and 7;_; are the middle times of two consecutive
bins, is constant. We define the width of thi bin asA
=71,— 7;_1, thereby making it become an exponentially in-
creasing function of the sequence position, so as to widel
compensate for the density decrease. In this representati
the probability density)(7;) is expressed by

N;
l/f(Ti)ZN—Ai,

The crosses refer to real data. The dashed line is the fitting function
of Eq. (24) with A;=31 006, T=8787, andu=2.12.

ith A, T, and u being three independent fitting param-
eters. It is worth noting that the normalization condition re-
duces the three independent parameters to two, as made clear
by Eq.(11), which is a function of only T angc. We find it
to be more convenient to adopt three independent fitting pa-
rameters, with the understood proviso that the departure of
A, from the value t—1)T#" ! can be interpreted as a way
0 estimate the inaccuracy of the adopted fitting procedure.
The fitting is done by using an implementation of the
nlinear least-squarddlLLS) Marquardt-Levenberg algo-
rithm [22]. The NLLS algorithm may not give unique values
or the fitting parameters. It needs initial guesses for the free
parameters and the final results may change or be affected by
huge errors. This fitting procedure yield6=8787, u
=2.12+0.32, andA;=31006. The evaluated value Af is
fot far from the value 29 236 that would be required by the
normalization condition. However, there are very large errors
-of the order of 100%, with an error on the parameteof the
order of 15%, thereby implying 1.80u<<2.44. This means
that the result of this fitting procedure would prevent us from
assessing the important question raised in Sec. Ill on whether
the process is stationary or nonstationary. The large error of
this procedure depends upon the initial values assigned to the
Yoree fitting parameters, w, andA;, whose choice requires
A" more efficient criterion. It also depends on the fact that
there are oscillations around the fitting curve, as clearly il-
lustrated by Fig. 5.

As earlier mentioned several times, a more accurate fitting
(23) s obtained using the functioW (7). Again we do not pay

attention to the normalization constraints and we adopt the
following fitting function:

whereN is the total number of data point, is number of

points located within théth bin, andA,, as earlier said, is

the width of theith bin.

pn—1

‘I’(T)IAz( (25

T+7

The fitting is done by using the prescription of a power

law of the type of Eq(11),

Ag
(T+7)r

p(7)=

As shown by Fig. 6, the fitting of the real data is now much
more accurate than that of Fig. 5. The fitting parameters used
are A,=30657 16590, T=8422+500, w=2.144

(24) +0.05. This sets on the key parameterthe constraint
2.094< 1< 2.194, which has the very attractive property of

046203-6



DIFFUSION ENTROPY AND WAITING TIME . . . PHYSICAL REVIEW E 65 046203

the original sequence of numbers. However, preliminary tri-
als with changing values of led us to conclude that there
*w are problems with the adoption of both excessively small and
ol ", | excessively large values df. The adoption of excessively

' , small values ofA would make the computer analysis too
"\, slow and would require an excessively large amount of com-
oot . ] puter memory. This is the reason why we cannot use the
' s, original sequence of numbers. The adoption of excessively
¥, large values ofA, on the other hand, would produce statis-
.l ] tical saturation, and a consequent subo_liffusion_ process that
) would not accurately reflect the dynamics behind the data.

A We adopted the criterion of using the largest valueAof
. . . . . N compatible with negligible saturation effect. Preliminary at-
100 1000 10000 100000 1000000 1000000 tempts made it possible for us to assess that this convenient

T (seconds) L
value is given byA =3600.

FIG. 6. W(7) as a function ofr. The crosses refer to real data  After processing the data, we have to realize the three
and the dashed line denotes the fitting function of B with ~ walking rules of Sec. IV. We note that according to the pre-
A,=30567,T=8422, andu=2.144. scription of Sec. Il, diffusion is generated by the random

walker jumping at any time step. The random walker makes
establishing the stationary nature of the dynamic model bgumps of intensity|&|, ahead or backward, according to
hind the solar flares fluctuations. The results of this searclvhetherg, >0 or & <0. Thus, we create a new sequece
for u, based on the direct evaluation #{7) and on the use of 0's and 1's, with the following prescription. We consider a
of ¥(7), are summarized in Table |. We note that the uncersequence of infinite empty sites, labeled by the integer index
tainty interval associated with the use¥f(7) is contained i, considered as a discrete time, running froml to i = .
within the wider uncertainty interval produced by the use ofwe divide this sequence into patches of wigth. The first
(7). This means that we are coming closer to the real valu@atch consists of the sités=1, i=2,...=p8,, the sec-
of u. The width of the uncertainty interval will be further ond patch consists of the sitéss8;+1, B:+2,....,8:1
reduced by using the DE method. + B, and so on. We assign the value 0 to all the sites of the
same patch but the last site. This means that the random
VI. DIEFUSION ENTROPY OF SOLAR ELARES walker walks only at the end of the patch, namely, at the
occurrence time of an event. To apply RuB, with the

This section is devoted to the analysis of the solar flaresgndom walker always moving in the same direction, we
data by means of the DE method. The final result will beg\ways assign to the last site of a given patch the value of 1.
given by u=2.138+0.01, namely, a value fon even more 1o apply Rule(2) we assign to the last site of any patch
accurate than that obtained in Sec. V by usii§r). We  gither the value 1 or the value 1, according to the coin
shall prove also that the DE method allows us to eStainSIﬁossing rule. The coin tossing prescription is realized by us-
some aspects of the dynamics behind solar flares that woul@lg a random number generator. To reduce the risk of artifi-
be overlooked by an analysis based only on the use of thgial periodicity we create ten different sequences, each cor-
waiting-time distribution. responding to a different random distribution of 1's and

The first issue that we have to solve is how to process the-1's. For any sequence we run the DE method and then we
data so as to apply the three walking rules of Sec. IV. Thenake the average over the ten resulting DE curves. To apply
data accessible to us are the times-t;—t;_;, with t; and  the Rule(2), which will be shown in action in Sec. VII C, we
ti_, denoting the time of occurrence of thth and the (  have to identifys; with ;.

—1)th solar flare, respectively. However, the direct adoption  The DE results obtained applying Rul® are illustrated
of these numbers would result in technical difficulties thatin Fig. 7. This figure shows one of the benefits of the DE

are bypassed by referring ourselves to the new sequence gfethod. According to Rulél), we have to use the prescrip-

1k *‘““‘“""‘"“"‘H‘*"""**’Pw i
Pt
.

Y@

0.0001
10

numbers tion of Eq.(19). The most accurate of the values of dis-
cussed in Sec. V, ia=2.144. This value, being smaller than

Bi=Int ﬂ +1, (26) 3 and larger than 2, makes us adopt the formédal/(u

J A —1), and yields the scaling parametés0.874, which is

. ) the slope of the straight line of Fig. 7.

where Infx] denotes the integer part af The adoption of This theoretical prediction implies that the timgsof the
A =1 would be virtually equivalent to referring ourselves to sequencd r;} are not correlated with each other. In the spe-
cific case of seasonal periodicity described by harmonic os-
cillations, the numerical results of Rdi8] prove that the
scaling detected by the DE, as well as by other methods to

Y(7) ¥(7) detect scaling, is higher than the Brownian motion scaling
1.80<u<2.44 2.094 11 <2.194 6=0.5. This is so even when there is no correlation in addi-
tion to seasonal periodicity. We eliminate this effect, by shuf-

TABLE I. Results of search fop.
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FIG. 7. DE as a function of time according to Ru®. The FIG. 8. DE as a function of time according to RU®. The

dotted straight line illustrates the slope of entropy increase corredotted straight line illustrates the slope of entropy increase corre-
sponding tou=2.144, ands=0.874, which is the best value of sponding tou=2.144, 6=0.5, which is the best value ¢f af-
afforded by the analysis of Sec. V. The dashed line is the DE curvédorded by the analysis of Sec. V. The dashed line is the DE curve
generated by the nonshuffled real data. The solid line is the DEenerated by the nonshuffled real data. The solid line is the DE
curve generated by the shuffled real data. curve generated by the shuffled real data.

fling the data. The DE method can be applied to both thdime region where the DE method might be fruitfully used to
original sequence oB; and to the shuffled sequence. If the detect scaling, is reduced to an intermediate time region, af-
DE vyields two different curves, this is a proof of the fact thatter the transition from dynamics to thermodynamics, and be-
there is memory in the original sequence. This is an impor.fore the saturation effects. This has the unwanted effect of
tant property that cannot be revealed by the analysis of thgetting limitations to the accuracy of the DE method. To
waiting-time distributiony(7). Figure 7 shows that this is bypass this difficulty we generate artificial sequences with
the case. In fact we see that the DE curve corresponding té€ same statistical limitations of the real data, and then we
the shuffled data, after the transition region at short time angearch for the parametgrthat establishes the most accurate
before saturation, has a slope distinctly smaller than thdtting with the DE curves derived from real data.

curve referring to the nonshuffled data. Furthermore, this To make this procedure as reliable as possible we proceed
slope is closer to the slope of the straight line correspondings follows. We assume thai( ) has the form

to the finding of Sec. V, which yielda=2.144, and, conse-

quently, according to Eq(19), 6§=0.874. However, both

shuffled and nonshuffled data yield saturation effects at a P(7)= (T+ )’ (27)
time scale of the order of;,,=1500 h. These saturation

effects set limits to the accuracy of the determination of thQNhereT andM are our f|tt|ng parameters_ The constanis

value of u by means of the DE method. determined by the normalization condition through
In Fig. 8 we illustrate the results obtained by using Rule
(2). It is remarkable that in this case the shuffled data yield, 1 w 1
with the DE method, an entropy increase fagtather than A f45(T+—T)MdT. (28

slowen than the nonshuffled data. This is a consequence of
the fact that in this case the deviation from ordinary diffu- "

sion, produced by time periodicity, would generate Sub_The fitting parameters are made to change around th'e mean
diffusion rather than superdiffusion. We notice that the dif-values established by the results of Sec. V which yjeld
ference between the shuffled and nonshuffled curves ig 2-+44*0.05 andT'=8422+500. Note that in the real data
smaller than in the case of Fig. [Rule (1)] and that the no time exists with a value smaller tha+=45 sec. This is

saturation effects show up at later times. We thus concludé,ro1e rg]asot?] Wh¥ the énttegrz#tlr?n n E(gs) |sfddor;e fro”.‘l 4bS| tq{
that Rule(2) is much less sensitive to periodicities and to * Father than from © tee. 1he€ number ol data available 1o

saturation effects than Rul@). ?ostﬁreepzii(l:ﬁgt?gr? we produce 7211 values;gfaccording

VIl. A FURTHER IMPROVEMENT: USE OF ARTIFICIAL 1 (u—1)y;
SEQUENCES T —

(T+45)1 A T 29
We have seen that the DE method reveals the existence of
memory effects that are overlooked by the direct evaluationwith the numbely; randomly selected in the intervied,1]. It
of the waiting-time distribution. However, as pointed out in is straightforward to prove that the resulting distributionrpf
Sec. Il and illustrated by the numerical results of Sec. VI, thes the same as that of E€R7) and fits the condition of Eq.
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FIG. 9. DE as a function of time according to R¢le. The two FIG. 10. DE as a function of time according to Ry®. The

solid curves denote the DE curve corresponding to the shuffled realvo solid curves denote the DE curve corresponding to the shuffled
data.(a) The vertical bars indicate the changes of the DE curveseal data(a) The vertical bars indicate the changes of the DE curves
resulting from the artificial sequences described in the text With resulting from the artificial sequences described in the text With
=8422 andu moving in the interval2.094, 2.194 (b) The vertical ~ =8422 andu moving in the interval2.094, 2.294 (b) The vertical
bars indicate the changes of the DE curves resulting from artificiabars indicate the changes of the DE curves resulting from artificial
sequences described in the text witk- 2.144, andl moving in the  sequences described in the text with-2.144, andl moving in the
interval[7922, 8922 interval [7922, 9922.

(28). At this stage we are ready to compare the DE curves A. A more accurate measurement ofit

generated by the artificial data to the DE curves generated by

the real data, using both Rult) and Rule(2). The compari- We have seen that the area of therror strip is signifi-

son is made with the DE curves corresponding to shuffle¢antly smaller than that of the-error strip, at least five

data, since the artificial sequences are generated without cdimes smaller. Therefore, we can improve the accuracy of

relation among the numbets. by assigning torl a fixed value and looking for the value of
Let us discuss first the results concerning Rdle These  « ensuring the best fitting of the real data. We assigh tioe

results are illustrated in Figs. 9. In Fig(ad we show the value of 8422, and we proceed with the search for the best

effect of changingu in the interval[2.094,2.193, with T fitting. The results are illustrated in Figs. (&l and 11b).

=8422 and in Fig. @) we show the effect of changirgin ~ The result concerning Ruld) is good, as seen in Fig. (&.

the interval[ 7922,8922, with x=2.144. We see that the DE AS expected, Fig. Ib) shows that the result concerning

curves of the artificial sequences fluctuate within an erroRRUle (2) is even better, and we think that it can be judged to

strip containing the DE curve of the real data. The size ofP® excellent. This extremely accurate result is due to the DE

this error strip increases upon change of time and we see thgyrve of the artificial sequence coinciding with the DE curve

the spreading caused by the chang@ &f much smaller than  Of real data over the wide range of 1000 h of diffusion. On

that caused by the change pf From a qualitative point of the basis of this excellent fitting, we conclude that

view, the results concerning Ru(@), shown in Figs. 1)

and 1@b), are very similar. u=2.138-0.01. (30
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FIG. 11. DE as a function of time. The solid lines denote the DE  F|G. 12. DE as a function of time. The solid lines denote the DE
curve generated by the shuffled real data, and the dashed linegyrve generated by the unshuffled real data, and the dashed lines,
which almost coincide with the solid lines, denote the DE curvesyhich almost coincide with the solid lines, denote the DE curves
resulting from the artificial sequence with=2.138 andT=8422.  resylting from the artificial sequence wifh=2.138 andT = 8422
(@ Rule (2). (b) Rule (2). with a modulation mimicking the influence of the 11-yr solar cycle.

Rule (1). (b) Rule (2).
B. Nonshuffled data and an artificial sequence (@ Rule (1. (b) Rule (2

with suitable memory
move toR, and from the set of the remainimg— 1 numbers

In Sec. VI, we have noticed that the result of the DEo,[f the artificial sequence we select the closest one to it, this

analysis depends on whether the real data are shuffled or n aing. let Us SaA. We or d with th me criterion
We think that in the original data there are signs of the 119 W(2). We procee € same criterio

year solar cycle and other subcycles. This makes it harder tBntiI we exhaust all the numbers of the artificial sequence. It
establish a connection between the scabihand the power is evident that the adoption of this procedure assigns to the

index .. However, if our conclusion that=2.138*0.01 is artificial data a time order reflecting the complex dynamics

correct, it should be possible to fit the DE curve of the non-llustrated by Figs. 2 and 3. _

shuffled original data with no further change of the fitting At this stage, we evaluate the corresponding DE curve
parameters and u, provided that we sort the artificial se- and we compare it to the DE curve generated by the non-
guence in such a way as to mimic the solar periodicity.Sthﬂed real data. As earlier mentioned, the sorted artificial
Rather than doing that with a model, for instance, a suitablélata are the same as those used to produce the excellent
modulation of the parameter of Eq. (12), we proceed in a fitting of the DE curves derived from the shuffled original
more direct way, according to the following procedure. Letdata. Thus, the fitting parameters are the same as those used
us callR; and A; the ith numbers of the real and artificial for Figs. 11. We illustrate the result in Figs. 12, which show
sequence used in Sec. VII A, respectively. Ttienumber of  that the fitting accuracy is as good [@nd for Rule(1) even

the sorted artificial sequence is denotedSy The subscript  slightly better thah the fitting of Figs. 11. This is a very

i ranges from 1 td\N. The numberS; is fixed by selecting remarkable result since Figs. 7 and 8 show that shuffling the
from the set ofA;’s the number that is closest ®,, this data produces a significant effect. Thus, Figs. 11 and 12
being, let us say;). We thus seB;=A,(;y. The number prove that the memory of the data is totally under our
Ajq) is eliminated from the artificial sequence. Then, wecontrol.

046203-10



DIFFUSION ENTROPY AND WAITING TIME . . . PHYSICAL REVIEW E 65 046203

45 ' ' that u=2.138+0.01. However, this is not the main result of

g his paper. We think that this paper shows that the DE method
is a remarkably accurate technique of analysis that goes
much beyond the direct evaluation of the waiting-time dis-
tribution (7). This is so because complex processes are
characterized by two different kinds of memory. The
memory of the first kind is the main object of the research
work done in the field of the science of complexity. To make
clear the nature of this kind of memory, let us re¢aH] that
a Markov master equation, namely, a stochastic process with-
out memory, is characterized by a waiting-time distribution
(1) with an exponential form, thereby implying memory
for a marked deviation from the exponential condition. This
05 - L is why the search for an inverse power-law distribution with
t (number of flares) a finite value ofu (the exponential distribution means
=) can be interpreted as a search for memory. This is the
solid lines denote the DE curve generated by the shuffled real datmemory of the first kind, to Whlc.h the pr_escrlptlops of Ref.
The dotted straight line iIIustrategs the slopeyof entropy increése, fg] are referred. For real data, in ?dd'“o” to this form of

memory, another type of memory might be present, denoted

=0.879, which corresponds {@=2.138. The dashed line denotes b f h d t der the f f
the DE curve resulting from the unshuffled real data. Note the syPy US as memory o € second lype, under the form o

perdiffusion of the unshuffled real data DE due to the memory incorrela}tion among the values. In'thi§ paper we have seen
the original signal. that this second form of memory is given, in this case, by the

11-yr solar periodicity. It is possible that this form of addi-
C. Third rule in action tional memory is present in many other complex processes
According to Lepreti, Carbone, and Veltfi23] the for differgnt reasons. It is also gvident that it.i_s difficult, or
waiting-time distributiony(7) is already Ley. This would perhaps |mp055|bl_e to reveal t_h|s form of gddltlonal memory
imply that the adoption of the third rule yields an infinitely PY méans of the direct evaluation ¢{7). This paper proves
fast transition from dynamics to thermodynamics. This is sghat the joint use of the direct evaluation ¢{7) [or of
because ey distribution is stable and the convolution be- ¥(7)] and of the DE method is a very useful supplement to
tween two distinct Ley distributions is a Ley distribution ~ the ordinary technique, and that it can be profitably used to
[16]. According to our analysisy(7) is a shifted inverse shed light on the dynamics behind the time series generated
power law. It is plausible that the difference between theby COmplex processes. _ _
shifted power-law distribution of Fig. 5 and thé\hedistri- ~_ This paper yields a convincing conclusion concerning the
bution of Ref.[23] is small. Consequently, the transition to distinction between two possible forms of nonstationary be-
thermodynamics is expected to be very fast. This expectatiof@vior. As pointed outin Sec. IIl, the claim that the waiting-
is confirmed by the numerical results illustrated in Fig. 13.time distributiony(7) has the form of Eq(11) is equivalent
The transition to the scaling regime is so fast that it is pos{© @ssuming that the dynamics of the flaring process is driven
sible to detect a wide regime of linear dependence of th&Y the model of Eq(12) with the assumption that the trajec-
entropy on lod, which allows us to derive fop the value tones are injected back randomly. This is a statllonary model
w=2.138, in total agreement with the conclusion of the earthat in the case where>2  (x>2), would be incompat-
lier analysis done by means of Rulds and(2). We see that ible with the existence of an invariant _d_lst_nbutuﬁﬂ] and
in this case the memory of the nonshuffled data yields a consequently with “thermodynamic equilibrium.” The inac-
slightly larger than the scaling parameter of the shuffled dats€uracy of the analyses done by earlier work in this field
The adoption of Rule(3) implies a statistical accuracy vyould prevenF us from dlstmgwshlng this form qf nonsta-
smaller than that of the other two rules, due to fact there is ngonary behavior from a genuine form of nonstationary be-
limitation to the jumps intensities, thereby decreasing thd1@vior. By genuinely nonstationary behavior, we mean the
number of particles located in the same cell. This has th&XiStence of rules changing with time. This form of genu-
effect of making the evaluation qf; and consequently that inely non;tatlonary behavior might be mod_eleq, for instance,
of the entropy less accurate. However, this disadvantage Y @ssuming that the parameteiof Eq. (12) is time depen-
widely compensated by the emergence of a much more exlent. If we make the assumption that the time dependence of

tended scaling region that yields as a result a valye bily ~ A has a period of 11 years, and we make our analysis over a
confirming that of the other two rules. period of time, that is, not much larger than this time period,

as we have done, then the process must be perceived as being

genuinely nonstationary. Our analysis is so accurate as to

rule out the former form of nonstationary behavior and to
We see that the uncertainty about the valugcdbr solar  detect significant effects stemming from the latter, or,

flares has been significantly reduced. The current literature, gquivalently, from the existence of the memory of the second

we give the same credit to all the authors, yields valueg of type.

ranging from 3 to 1.7. We provide the compelling conclusion  The original motivation for this paper has been to show in

4 F

35

3

S(t)

FIG. 13. DE as a function of time, according to R¢8. The

VIIl. CONCLUDING REMARKS
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action the method of entropic analysis recently developed bgtatistics with the modulation produced by the solar cycle.
our group[8-10], so as to afford indisputable results that In our notation, the power index found by the authors of
might help the researcher of this field to establish whetheRef.[23] is u=2.38, a value that turns out to be compatible
the proponents of self-organized criticalit®5] or those of  with the uncertainty interval associated with the determina-
turbulencd 3,4] are right. Let us try to reach a conclusion on tion of x by means of the direct evaluation @f(7). Our

this issue, on the basis of the results of this paper. The dyanalysis establishes a connection with/y estatistics, in ac-
namical model of Sec. Il is inspired by the models of tur- cordance again with the conclusions of R&X3]. However,
bulence, but we mainly use it to generate artificial sequencese adopt a perspective that is different from that of the au-
mimicking the real ones with no claim that it is an exhaustivethors of Ref.[23]. Our diffusion process reaches théviye
picture of the dynamics behind solar flares. The fitting of Fig.regime after the process of transition from dynamics to ther-
6 seems as good as the fitting of Fig. 1 of R&3]. How-  modynamics that has been discussed in detail in the earlier
ever, our analysis does not rest only on the waiting-timesections. This process is very fast if R is adopted, but
distribution. In a very recent paper Wheatld2@)] criticized it is not infinitely fast as in the perspective of the authors of
the work of Ref[23] as being based on the assumption thatRef. [23], who assume the waiting-time distributigi{7) to

the rate of solar flares is constant. This is not so, as shown bybey already the g statistics. We do not rule out the pos-
Fig. 3. On the other hand, modeling the time dependence diibility that (7) is a stretched exponentifl9]. In fact, a

this rate is not easy, since it does not correspond only to atretched exponential would not conflict with the attainment
11-yr periodic motion but to a much more complex condi-of Lévy statistics in the long-time limit of the diffusion pro-
tion, as illustrated in Fig. 4. In fact, this figure shows thatcess. Although a truncation af(7) at large values ofr
there are many other components in action. This is the reasajenerates a finite second moment, and consequently Gauss-
why we decided to mimic the time dependence of the solajan statistics in the long-time limit, the transition to the con-
flare rate sorting the artificial sequence in the way describedentional thermodynamic regime is ultraslop0]. It is

in Sec. VII B. We found that this yields a fitting with the real known [21] that a much earlier transition to i statistics
data as good as the fitting between the DE curve produced lyccurs and that the vy regime lasts for a very extended
the artificial sequence, with no sorting induced memory, angeriod of time. The transition to the Gaussian regime prob-
the DE curve produced by the shuffled real data. This is, irably takes place at times much larger than the saturation
our opinion, a strong indication that the valuewo£2.138is  time, and might be made visible only in the ideal case of
a genuine property of real data. In principle, this compellinginfinitely large sequences.

conclusion would not rule out the adoption of a modulated In conclusion, with all the earlier warnings in mind, we
Poisson process of the same kind as that advocated lpan conclude that the statistical analysis of this paper lends
Wheatland[26]. This is so because, as shown in R&7],  support to the turbulence perspective. We hope furthermore
the time modulation of a Poisson process can also yield that this paper affords a criterion of analysis that might help
<3 as well asu=3, as in the work of Wheatlanf®26]. In  to settle not only that of solar flares, but also other delicate
other words, using the terminology adopted in this paper, wéssues concerning complex systems.

cannot rule out the possibility that only memory of the sec-

ond type is responsible for=2.138. On the other hand, ACKNOWLEDGMENT
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and they claim that this proves a departure of flare statistics We thank the BATSE/CGRO team, NASA/Goddard
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seems to be difficult to derive =2.138 from a local Poisson the data.
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